organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-[(2-Hydroxybenzylidene)amino]-11-(2hydroxyphenyl)-10,13-diphenyl-8-oxa-12-azoniatricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5-triene acetate ethanol disolvate

Le Tuan Anh,^a* Truong Hong Hieu,^b Anatoly T. Soldatenkov,^b Svetlana A. Soldatova^b and Victor N. **Khrustalev**^c

^aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, ^bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow 117198, Russian Federation, and ^cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation

Correspondence e-mail: vkh@xray.ineos.ac.ru

Received 27 January 2011; accepted 29 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.107; data-to-parameter ratio = 16.0.

The title compound, $C_{36}H_{31}N_2O_3^+$, $C_2H_3O_2^- \cdot 2C_2H_5OH$, the product of a domino condensation of dibenzyl ketone with salicylic aldehyde and ammonium acetate, crystallized as the ethanol disolvate. The cation of the salt comprises a fused tricyclic system containing three six-membered rings (piperidine, dihydro-2H-pyran and benzene). The piperidine ring has the usual chair conformation, while the dihydropyran ring adopts a slightly distorted sofa conformation. In the crystal, there are six (one intra- and five intermolecular) independent hydrogen-bonding interactions: the intermolecular hydrogen bonds link the cations and anions and ethanol solvent molecules into ribbons along [001]. The ribbons are stacked along the *a* axis.

Related literature

For general background to the method proposed by our group 2-oxa-6-azabenzobicyclononanes for obtaining using commercially available dibenzyl ketone, salicylic aldehyde and ammonium acetate as starting materials, see: Baliah et al. (1983); Soldatenkov et al. (1996); Le Tuan Anh et al. (2008). For related compounds, see: Soldatenkov et al. (2002, 2010).

V = 3749.0 (5) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.15 \times 0.13 \text{ mm}$

35569 measured reflections

7399 independent reflections

4951 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.062$

Z = 4

Experimental

Crystal data $C_{36}H_{31}N_2O_3^+ \cdot C_2H_3O_2^- \cdot 2C_2H_6O_3^+ \cdot C_2H_3O_2^- \cdot C_2H_6O_3^+ \cdot C_2H_3O_2^- \cdot C_2O_2O_3^+ \cdot C_2O_3^+ \cdot$ M = 690.81Monoclinic, $P2_1/c$ a = 13.5464 (10) Å

b = 20.1124 (15) Åc = 14.2535 (11) Å $\beta = 105.118 (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.977, \ T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	463 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
7399 reflections	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> ···N1	0.94	1.73	2.608 (2)	154
$O2-H2O\cdots O3^{i}$	0.97	1.67	2.637 (2)	177
$O5-H5O\cdots O6^{ii}$	0.97	1.69	2.651 (2)	174
O6−H6 <i>O</i> ···O4	0.98	1.65	2.617 (2)	173
$N12 - H12A \cdots O3$	0.93	1.77	2.697 (2)	172
N12-H12 B ···O5	0.94	1.77	2.709 (2)	173

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2264).

References

Baliah, V., Jeyaraman, R. & Chandrasekaran, L. (1983). Chem. Rev. 83, 379–423.

- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Le Tuan Anh, Soldatenkov, A. T., Truong Hong Hieu, Soldatova, S. A., Levov, A. N. & Polyanskii, K. B. (2008). *Chem. Heterocycl. Compd*, **44**, 1527–1531.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Soldatenkov, A. T., Kuleshova, L. N., Mandal, T. K., Nesterov, V. N., Mamyrbekova, Zh. A. & Struchkov, Yu. T. (1996). *Chem. Heterocycl. Compd*, 32, 233–237.
- Soldatenkov, A. T., Polyanskii, K. B. & Mamyrbekova, Zh. A. (2002). Russ. J. Org. Chem. 38, 480–481.
- Soldatenkov, A. T., Truong Hong Hieu, Le Tuan Anh, Kolyadina, N. M. & Soldatova, S. A. (2010). *Chem. Heterocycl. Compd*, **46**, 1910–1912.

Acta Cryst. (2011). E67, o560-o561 [doi:10.1107/S160053681100376X]

9-[(2-Hydroxybenzylidene)amino]-11-(2-hydroxyphenyl)-10,13-diphenyl-8-oxa-12azoniatricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5-triene acetate ethanol disolvate

L. T. Anh, T. H. Hieu, A. T. Soldatenkov, S. A. Soldatova and V. N. Khrustalev

Comment

Recently our group has found an efficient method of the one-step synthesis of potentially bioactive substances having oxazocine skeletal structure. These molecules are formed by domino condensation from commercially available dibenzyl ketone, salicylic aldehyde and ammonium acetate as starting materials (Soldatenkov *et al.*, 2010). The key step of this condensation is Petrenko–Kritchenko reaction (Baliah *et al.*, 1983) leading to the formation of the substituted γ -piperidone (Le Tuan Anh *et al.*, 2008), which then reacts with the excess of ammonium acetate and aldehyde. This work reports the structural characterization of a product of such reaction - 2-oxa-6-aza-3,4-benzobicyclo[3.3.1^{1,5}]nonan-6-ium acetate (I).

Compound I crystallizes as diethanol solvate, *i.e.*, $C_{38}H_{34}N_2O_5^2(C_2H_6O)$. The cation of the salt I comprises a fused tricyclic system containing three six-membered rings (piperidine, dihydro-2*H*-pyran and benzene) (Fig. 1). The piperidine ring has the usual *chair* conformation, while the dihydropyran ring adopts the slightly distorted *sofa* conformation (the C13 carbon atom deviates from the plane passed through the other atoms of the ring by 0.691 (2) Å). The phenyl substituents at the C10 and C11 carbon atoms occupy the sterically favorable equatorial positions, whereas the phenyl substituent at the C13 carbon atom is axially disposed.

The cation of **I** possesses four asymmetric centers at the C1, C10, C11, and C13 carbon atoms and can have potentially numerous diastereomers. The crystal of **I** is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: *rac*-1*S**,10*R**,11*S**, 13*S**.

In the crystal, there are six (one intra- and five intermolecular) independent hydrogen bonding interactions (Table 1). The intermolecular hydrogen bonds link the cations and anions of **I** and ethanol solvate molecules into ribbons along the direction $[0\ 0\ 1]$ (Fig. 2). The crystal packing of the ribbons is stacked along the *a* axis.

Experimental

Ammonium acetate (4.0 g, 52 mmol) was added to a solution of dibenzyl ketone (2.1 g, 10 mmol) and salicylic aldehyde (3.66 g, 30 mmol) in ethanol (50 ml) (Fig. 3). The reaction mixture was stirred for 96 h at 293 K (monitoring by *TLC* until disappearance of the starting ketone spot). At the end of the reaction, the formed precipitate was filtered off, one half of the mother liquid solvent removed under reduced pressure and the residue was cooled to give 1.45 g of light-yellow crystals of I. Yield is 21%. *M*.p. = 451–453 K. IR (KBr), v/cm⁻¹: 1623, 1748, 3405, 3460. ¹H NMR (DMSO-*d*₆, 400 MHz, 300 K): δ = 1.08 (t, 6H, CH₃CH₂O, J = 6.8), 3.30 (s, 3H, CH₃CO), 3.47 (q, 4H, CH₃CH₂O, J = 6.8), 3.77 (d, 1H, H8, J_{7.8} = 9.0), 4.23 (d, 1H, H9, J_{5.9} = 1.5), 4.32 (d, 1H, H7, J_{7.8} = 9.0), 4.41 (br, 4H, 2(*Alk*)OH, ⁺NH₂), 4.48 (d, 1H, H5, J_{5.9} = 1.5), 6.41–7.50 (br m, 22H, H_{arom}), 7.94 (s, 1H, N=CH), 10.63 (br, 1H, (*Ar*)OH), 12.48 (s, 1H, (*Ar*)OH). Anal. Calcd. for C₄₂H₄₆N₂O₇: C, 73.04; H, 6.67; N, 4.06. Found: C, 73.13; H, 6.79; N, 4.23.

Refinement

The hydrogen atoms of the hydroxy and amino groups were localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(O) \text{ and } 1.2U_{eq}(N)]$. The other hydrogen atoms were placed in calculated positions with C-H = 0.95-1.00Å and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃-groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for the other groups].

Figures

Fig. 1. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.

Fig. 2. Crystal packing of I. Dashed lines indicate hydrogen bonds.

Fig. 3. Domino condensation of dibenzyl ketone with salicylic aldehyde and ammonium acetate.

9-[(2-Hydroxybenzylidene)amino]-11-(2-hydroxyphenyl)-10,13-diphenyl-8-oxa-12azoniatricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5-triene acetate ethanol disolvate

Crystal data

$C_{36}H_{31}N_2O_3^+ \cdot C_2H_3O_2^- \cdot 2C_2H_6O$	F(000) = 1472
$M_r = 690.81$	$D_{\rm x} = 1.224 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = $451-453$ K
Hall symbol: -P 2ybc	Mo K α radiation, $\lambda = 0.71073$ Å
a = 13.5464 (10) Å	Cell parameters from 4349 reflections

b = 20.1124 (15) Å	$\theta = 2.5 - 23.7^{\circ}$
c = 14.2535 (11) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 105.118 \ (2)^{\circ}$	T = 100 K
V = 3749.0 (5) Å ³	Prism, light-yellow
Z = 4	$0.28 \times 0.15 \times 0.13 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	7399 independent reflections
Radiation source: fine-focus sealed tube	4951 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.062$
ϕ and ω scans	$\theta_{\text{max}} = 26.1^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -16 \rightarrow 16$
$T_{\min} = 0.977, \ T_{\max} = 0.989$	$k = -24 \rightarrow 24$
35569 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.107$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.044P)^2 + 0.8P]$ where $P = (F_0^2 + 2F_c^2)/3$
7399 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
463 parameters	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates a	and isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
	1	1 1	1	1	· · ·

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.31447 (13)	0.45725 (9)	0.26034 (13)	0.0241 (4)
H1	0.3562	0.4309	0.3162	0.029*

C2	0.27020 (13)	0.41161 (8)	0.17702 (13)	0.0238 (4)
C3	0.31983 (14)	0.35414 (9)	0.15984 (14)	0.0286 (4)
Н3	0.3835	0.3423	0.2031	0.034*
C4	0.27796 (14)	0.31398 (9)	0.08085 (15)	0.0332 (5)
H4	0.3128	0.2749	0.0698	0.040*
C5	0.18468 (14)	0.33100 (9)	0.01773 (14)	0.0308 (4)
H5	0.1562	0.3036	-0.0370	0.037*
C6	0.13298 (13)	0.38735 (8)	0.03375 (13)	0.0253 (4)
H6	0.0687	0.3985	-0.0089	0.030*
C7	0.17631 (13)	0.42725 (8)	0.11278 (12)	0.0224 (4)
O8	0.11919 (8)	0.48161 (5)	0.12638 (8)	0.0223 (3)
C9	0.16377 (13)	0.52919 (8)	0.20072 (12)	0.0218 (4)
C10	0.22947 (12)	0.58026 (8)	0.16205 (13)	0.0229 (4)
H10	0.2529	0.6143	0.2143	0.027*
C11	0.32643 (12)	0.54871 (8)	0.14383 (12)	0.0222 (4)
H11	0.3046	0.5182	0.0867	0.027*
N12	0.38139 (10)	0.50797 (7)	0.22941 (10)	0.0226 (3)
H12A	0.4342	0.4854	0.2119	0.027*
H12B	0.4088	0.5347	0.2840	0.027*
C13	0.23087 (12)	0.49527 (8)	0.29266 (12)	0.0235 (4)
H13	0.2660	0.5317	0.3365	0.028*
N1	0.08334 (10)	0.56563 (7)	0.22658 (10)	0.0232 (3)
C14	-0.00930 (13)	0.54651 (9)	0.20077 (13)	0.0256 (4)
H14	-0.0258	0.5075	0.1623	0.031*
C15	-0.09103 (13)	0.58249 (9)	0.22817 (13)	0.0260 (4)
C16	-0.07164 (14)	0.64102 (10)	0.28307 (14)	0.0335 (5)
01	0.02500 (10)	0.66495 (7)	0.31689 (12)	0.0508 (4)
H1O	0.0648	0.6343	0.2931	0.076*
C17	-0.15130 (15)	0.67540 (10)	0.30517 (16)	0.0420 (5)
H17	-0.1381	0.7155	0.3416	0.050*
C18	-0.24953 (15)	0.65141 (11)	0.27434 (15)	0.0411 (5)
H18	-0.3037	0.6752	0.2899	0.049*
C19	-0.27084 (15)	0.59328 (10)	0.22123 (15)	0.0392 (5)
H19	-0.3388	0.5768	0.2012	0.047*
C20	-0.19200 (14)	0.55965 (10)	0.19783 (14)	0.0333 (5)
H20	-0.2064	0.5201	0.1603	0.040*
C21	0.16999 (12)	0.61709 (8)	0.07242 (13)	0.0239 (4)
C22	0.15273 (13)	0.58968 (9)	-0.01999 (13)	0.0264 (4)
H22	0.1762	0.5460	-0.0273	0.032*
C23	0.10186 (13)	0.62515 (9)	-0.10155 (14)	0.0301 (4)
H23	0.0917	0.6059	-0.1642	0.036*
C24	0.06575 (14)	0.68840 (10)	-0.09224 (15)	0.0347 (5)
H24	0.0309	0.7127	-0.1482	0.042*
C25	0.08082 (14)	0.71584 (9)	-0.00093 (16)	0.0366 (5)
H25	0.0554	0.7591	0.0060	0.044*
C26	0.13278 (13)	0.68080 (9)	0.08103 (15)	0.0298 (4)
H26	0.1431	0.7004	0.1435	0.036*
C27	0.39849 (12)	0.59989 (9)	0.12015 (13)	0.0241 (4)
C28	0.43138 (13)	0.59222 (9)	0.03550 (13)	0.0257 (4)

02	0.39434 (9)	0.54015 (6)	-0.02342 (9)	0.0311 (3)
H2O	0.4183	0.5416	-0.0816	0.047*
C29	0.49980 (14)	0.63804 (10)	0.01430 (14)	0.0340 (5)
H29	0.5235	0.6326	-0.0423	0.041*
C30	0.53299 (15)	0.69114 (10)	0.07520 (16)	0.0394 (5)
H30	0.5798	0.7220	0.0603	0.047*
C31	0.49895 (15)	0.70016 (10)	0.15790 (15)	0.0361 (5)
H31	0.5206	0.7376	0.1988	0.043*
C32	0.43302 (13)	0.65386 (9)	0.18001 (14)	0.0293 (4)
H32	0.4109	0.6592	0.2376	0.035*
C33	0.17145 (13)	0.45525 (9)	0.35001 (13)	0.0268 (4)
C34	0.12157 (14)	0.39565 (10)	0.31830 (14)	0.0332 (5)
H34	0.1256	0.3769	0.2582	0.040*
C35	0.06608 (16)	0.36341 (11)	0.37368 (15)	0.0427 (5)
H35	0.0325	0.3227	0.3513	0.051*
C36	0.05916 (17)	0.39003 (12)	0.46139 (16)	0.0477 (6)
H36	0.0200	0.3682	0.4987	0.057*
C37	0.10967 (17)	0.44863 (11)	0.49416 (16)	0.0464 (6)
H37	0.1066	0.4667	0.5549	0.056*
C38	0.16484 (15)	0.48112 (10)	0.43867 (14)	0.0357 (5)
H38	0.1986	0.5217	0.4615	0.043*
O5	0.46371 (10)	0.57558 (7)	0.39577 (9)	0.0374 (3)
H5O	0.4207	0.5946	0.4335	0.056*
C41	0.56962 (14)	0.57329 (10)	0.44520 (15)	0.0351 (5)
H41A	0.6090	0.5584	0.3995	0.042*
H41B	0.5804	0.5405	0.4987	0.042*
C42	0.60860 (16)	0.63970 (10)	0.48591 (17)	0.0454 (6)
H42A	0.6826	0.6371	0.5146	0.068*
H42B	0.5747	0.6526	0.5360	0.068*
H42C	0.5941	0.6729	0.4338	0.068*
O6	0.66244 (10)	0.37980 (6)	0.50427 (10)	0.0369 (3)
H6O	0.6265	0.3937	0.4387	0.055*
C43	0.70231 (18)	0.31419 (11)	0.50708 (16)	0.0468 (6)
H43A	0.7738	0.3162	0.5021	0.056*
H43B	0.6617	0.2886	0.4508	0.056*
C44	0.69941 (17)	0.27955 (11)	0.59883 (16)	0.0474 (6)
H44A	0.7292	0.2351	0.5997	0.071*
H44B	0.6284	0.2757	0.6024	0.071*
H44C	0.7388	0.3051	0.6546	0.071*
C39	0.59166 (14)	0.42003 (10)	0.25775 (14)	0.0321 (4)
C40	0.69533 (16)	0.39181 (13)	0.25958 (17)	0.0524 (6)
H40A	0.7006	0.3464	0.2854	0.079*
H40B	0.7487	0.4195	0.3010	0.079*
H40C	0.7040	0.3911	0.1934	0.079*
03	0.54470 (9)	0.45292 (6)	0.18438 (9)	0.0316 (3)
O4	0.55567 (10)	0.41052 (8)	0.32869 (10)	0.0459 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0223 (9)	0.0253 (9)	0.0253 (10)	-0.0004 (7)	0.0072 (7)	0.0040 (8)
C2	0.0242 (9)	0.0216 (9)	0.0288 (10)	-0.0005 (7)	0.0125 (8)	0.0047 (7)
C3	0.0266 (10)	0.0247 (10)	0.0386 (11)	0.0017 (7)	0.0159 (8)	0.0058 (8)
C4	0.0349 (11)	0.0221 (10)	0.0505 (13)	-0.0001 (8)	0.0252 (10)	-0.0016 (9)
C5	0.0350 (11)	0.0241 (10)	0.0391 (11)	-0.0062 (8)	0.0200 (9)	-0.0069 (8)
C6	0.0261 (10)	0.0251 (10)	0.0277 (10)	-0.0021 (7)	0.0125 (8)	-0.0005 (8)
C7	0.0257 (9)	0.0186 (9)	0.0282 (10)	-0.0005 (7)	0.0161 (8)	0.0007 (7)
08	0.0229 (6)	0.0206 (6)	0.0247 (7)	0.0012 (5)	0.0084 (5)	-0.0030 (5)
С9	0.0227 (9)	0.0214 (9)	0.0232 (9)	0.0003 (7)	0.0092 (7)	-0.0042 (7)
C10	0.0204 (9)	0.0220 (9)	0.0281 (10)	-0.0014 (7)	0.0095 (7)	-0.0032 (7)
C11	0.0217 (9)	0.0233 (9)	0.0223 (9)	0.0008 (7)	0.0070 (7)	0.0004 (7)
N12	0.0196 (7)	0.0264 (8)	0.0233 (8)	0.0020 (6)	0.0082 (6)	0.0002 (6)
C13	0.0232 (9)	0.0252 (9)	0.0231 (9)	-0.0017 (7)	0.0077 (7)	-0.0021 (7)
N1	0.0222 (8)	0.0225 (8)	0.0281 (8)	-0.0005 (6)	0.0122 (6)	-0.0022 (6)
C14	0.0298 (10)	0.0239 (9)	0.0257 (10)	-0.0014 (8)	0.0117 (8)	-0.0019 (8)
C15	0.0266 (10)	0.0263 (10)	0.0271 (10)	0.0006 (7)	0.0103 (8)	0.0003 (8)
C16	0.0303 (11)	0.0330 (11)	0.0398 (12)	-0.0020 (8)	0.0138 (9)	-0.0090 (9)
01	0.0290 (8)	0.0438 (9)	0.0836 (12)	-0.0086 (6)	0.0216 (8)	-0.0343 (8)
C17	0.0369 (12)	0.0369 (12)	0.0552 (14)	0.0023 (9)	0.0178 (10)	-0.0153 (10)
C18	0.0308 (11)	0.0492 (13)	0.0459 (13)	0.0067 (9)	0.0145 (10)	-0.0095 (11)
C19	0.0261 (11)	0.0481 (13)	0.0455 (13)	-0.0007 (9)	0.0130 (9)	-0.0105 (10)
C20	0.0295 (11)	0.0368 (11)	0.0352 (11)	-0.0037 (8)	0.0115 (9)	-0.0082 (9)
C21	0.0168 (9)	0.0237 (9)	0.0329 (10)	-0.0022 (7)	0.0095 (7)	0.0018 (8)
C22	0.0222 (9)	0.0248 (10)	0.0334 (11)	0.0013 (7)	0.0093 (8)	0.0024 (8)
C23	0.0260 (10)	0.0335 (11)	0.0321 (11)	-0.0022 (8)	0.0098 (8)	0.0061 (9)
C24	0.0261 (10)	0.0317 (11)	0.0447 (13)	-0.0012 (8)	0.0066 (9)	0.0136 (9)
C25	0.0313 (11)	0.0211 (10)	0.0584 (15)	0.0014 (8)	0.0134 (10)	0.0061 (9)
C26	0.0266 (10)	0.0234 (10)	0.0414 (12)	-0.0015 (8)	0.0125 (9)	-0.0015 (8)
C27	0.0191 (9)	0.0246 (9)	0.0293 (10)	0.0007 (7)	0.0073 (7)	0.0024 (8)
C28	0.0211 (9)	0.0276 (10)	0.0281 (10)	0.0017 (7)	0.0062 (8)	0.0022 (8)
02	0.0320 (7)	0.0357 (8)	0.0297 (7)	-0.0059 (6)	0.0151 (6)	-0.0045 (6)
C29	0.0336 (11)	0.0381 (12)	0.0342 (11)	-0.0049 (9)	0.0156 (9)	0.0045 (9)
C30	0.0366 (12)	0.0350 (12)	0.0502 (13)	-0.0092 (9)	0.0179 (10)	0.0060 (10)
C31	0.0329 (11)	0.0288 (10)	0.0461 (13)	-0.0074 (8)	0.0094 (9)	-0.0046 (9)
C32	0.0253 (10)	0.0318 (11)	0.0322 (11)	-0.0015 (8)	0.0099 (8)	-0.0021 (8)
C33	0.0237 (9)	0.0326 (10)	0.0248 (10)	-0.0006 (8)	0.0075 (8)	0.0018 (8)
C34	0.0349 (11)	0.0405 (12)	0.0261 (10)	-0.0098 (9)	0.0113 (8)	-0.0003 (9)
C35	0.0465 (13)	0.0471 (13)	0.0373 (12)	-0.0188 (10)	0.0163 (10)	-0.0013 (10)
C36	0.0536 (14)	0.0591 (15)	0.0381 (13)	-0.0189 (11)	0.0259 (11)	0.0012 (11)
C37	0.0578 (14)	0.0557 (15)	0.0352 (12)	-0.0153 (11)	0.0289 (11)	-0.0087 (11)
C38	0.0383 (11)	0.0382 (12)	0.0351 (11)	-0.0071 (9)	0.0178 (9)	-0.0051 (9)
O5	0.0285 (7)	0.0497 (9)	0.0331 (8)	-0.0006 (6)	0.0064 (6)	-0.0104 (7)
C41	0.0284 (10)	0.0357 (11)	0.0389 (12)	-0.0008 (8)	0.0045 (9)	-0.0025 (9)
C42	0.0394 (12)	0.0343 (12)	0.0590 (15)	-0.0062 (9)	0.0067 (11)	0.0009 (11)

O6	0.0375 (8)	0.0375 (8)	0.0361 (8)	0.0077 (6)	0.0102 (6)	-0.0005 (6)	
C43	0.0541 (14)	0.0419 (13)	0.0465 (14)	0.0159 (11)	0.0171 (11)	0.0013 (11)	
C44	0.0503 (14)	0.0439 (13)	0.0507 (14)	0.0129 (10)	0.0177 (11)	0.0050 (11)	
C39	0.0282 (10)	0.0365 (11)	0.0344 (11)	0.0031 (8)	0.0133 (9)	0.0011 (9)	
C40	0.0419 (13)	0.0696 (17)	0.0522 (15)	0.0227 (12)	0.0238 (11)	0.0142 (12)	
O3	0.0268 (7)	0.0401 (8)	0.0302 (7)	0.0057 (6)	0.0117 (6)	0.0035 (6)	
O4	0.0382 (8)	0.0664 (11)	0.0376 (9)	0.0189 (7)	0.0181 (7)	0.0160 (7)	
Geometric paran	neters (Å, °)						
C1—C2		1.497 (2)	C24	1—C25	1.379	(3)	
C1—N12		1.505 (2)	C24	1—H24	0.9500)	
C1—C13		1.533 (2)	C25	5—C26	1.388	(3)	
C1—H1		1.0000	C25	5—Н25	0.9500)	
C2—C3		1.391 (2)	C26	б—Н26	0.9500)	
C2—C7		1.396 (2)	C27	7—С32	1.384	(2)	
C3—C4		1.382 (3)	C27	7—C28	1.400	(2)	
С3—Н3		0.9500	C28	3—02	1.354	(2)	
C4—C5		1.389 (3)	C28	3—C29	1.395	(2)	
C4—H4		0.9500	02-	—H2O	0.9659)	
C5—C6		1.382 (2)	C29	9—С30	1.376 (3)		
С5—Н5		0.9500	C29	9—Н29	0.9500)	
С6—С7		1.383 (2)	C30)—C31	1.385 (3)		
С6—Н6		0.9500	C30)—Н30	0.9500	0.9500	
С7—О8		1.3820 (19)	C31	L—C32	1.382	1.382 (3)	
O8—C9		1.438 (2)	C31	I—H31	0.9500)	
C9—N1		1.439 (2)	C32	2—Н32	0.9500)	
C9—C13		1.545 (2)	C33	3—C38	1.391	(3)	
C9—C10		1.551 (2)	C33	3—C34	1.392	(3)	
C10-C21		1.514 (2)	C34	1—C35	1.385	(3)	
C10-C11		1.541 (2)	C34	1—H34	0.9500)	
C10—H10		1.0000	C35	5—C36	1.385	(3)	
C11—N12		1.497 (2)	C35	5—Н35	0.9500	0.9500	
C11—C27		1.516 (2)	C36	5—C37	1.382	(3)	
C11—H11		1.0000	C36	5—Н36	0.9500)	
N12—H12A		0.9347	C37	7—C38	1.386	(3)	
N12—H12B		0.9381	C37	7—Н37	0.9500)	
C13—C33		1.519 (2)	C38	3—H38	0.9500)	
С13—Н13		1.0000	05-	C41	1.425	(2)	
N1-C14		1.272 (2)	O5-	—Н5О	0.9692	2	
C14—C15		1.459 (2)	C41		1.497	(3)	
C14—H14		0.9500	C41	I—H41A	0.9900)	
C15—C16		1.400 (3)	C41	I—H41B	0.9900)	
C15—C20		1.400 (3)	C42	2—H42A	0.9800)	
C16—O1		1.360 (2)	C42	2—H42B	0.9800)	
C16—C17		1.385 (3)	C42	2—H42C	0.9800)	
01—H10		0.9389	O6-	C43	1.422	(2)	
C17—C18		1.375 (3)	O6-	—Н6О	0.9752	2	
С17—Н17		0.9500	C43	3—C44	1.491	(3)	

C18—C19	1.382 (3)	C43—H43A	0.9900
C18—H18	0.9500	C43—H43B	0.9900
C19—C20	1.377 (3)	C44—H44A	0.9800
С19—Н19	0.9500	C44—H44B	0.9800
C20—H20	0.9500	C44—H44C	0.9800
C21—C22	1.390 (3)	C39—O4	1.246 (2)
C21—C26	1.394 (2)	C39—O3	1.261 (2)
C22—C23	1.385 (2)	C39—C40	1.509 (3)
C22—H22	0.9500	C40—H40A	0.9800
C23—C24	1.382 (3)	C40—H40B	0.9800
С23—Н23	0.9500	C40—H40C	0.9800
C2—C1—N12	109.30 (14)	C24—C23—C22	120.32 (19)
C2—C1—C13	111.69 (14)	С24—С23—Н23	119.8
N12—C1—C13	107.37 (13)	С22—С23—Н23	119.8
C2—C1—H1	109.5	C25—C24—C23	119.36 (18)
N12—C1—H1	109.5	С25—С24—Н24	120.3
C13—C1—H1	109.5	C23—C24—H24	120.3
C3—C2—C7	118.13 (16)	C24—C25—C26	120.58 (18)
C3—C2—C1	122.50 (16)	C24—C25—H25	119.7
C7—C2—C1	119.36 (15)	С26—С25—Н25	119.7
C4—C3—C2	120.99 (18)	C25—C26—C21	120.53 (18)
С4—С3—Н3	119.5	С25—С26—Н26	119.7
С2—С3—Н3	119.5	C21—C26—H26	119.7
C3—C4—C5	119.63 (17)	C32—C27—C28	119.04 (16)
C3—C4—H4	120.2	C32—C27—C11	121.92 (16)
С5—С4—Н4	120.2	C28—C27—C11	119.03 (15)
C6—C5—C4	120.63 (18)	O2—C28—C29	122.43 (16)
С6—С5—Н5	119.7	O2—C28—C27	118.04 (15)
C4—C5—H5	119.7	C29—C28—C27	119.53 (17)
C5—C6—C7	118.99 (17)	С28—О2—Н2О	110.8
С5—С6—Н6	120.5	C30—C29—C28	120.17 (18)
С7—С6—Н6	120.5	С30—С29—Н29	119.9
O8—C7—C6	116.05 (15)	С28—С29—Н29	119.9
O8—C7—C2	122.28 (15)	C29—C30—C31	120.79 (18)
C6—C7—C2	121.61 (16)	С29—С30—Н30	119.6
С7—О8—С9	119.13 (13)	С31—С30—Н30	119.6
O8—C9—N1	109.09 (13)	C32—C31—C30	118.95 (18)
O8—C9—C13	111.85 (13)	C32—C31—H31	120.5
N1—C9—C13	108.96 (13)	С30—С31—Н31	120.5
O8—C9—C10	110.38 (13)	C31—C32—C27	121.48 (18)
N1—C9—C10	107.26 (13)	C31—C32—H32	119.3
C13—C9—C10	109.18 (13)	С27—С32—Н32	119.3
C21—C10—C11	110.40 (14)	C38—C33—C34	118.44 (17)
C21—C10—C9	113.29 (14)	C38—C33—C13	117.35 (16)
C11—C10—C9	112.37 (14)	C34—C33—C13	124.20 (16)
C21—C10—H10	106.8	C35—C34—C33	120.51 (18)
C11—C10—H10	106.8	С35—С34—Н34	119.7
C9—C10—H10	106.8	С33—С34—Н34	119.7
N12—C11—C27	109.93 (13)	C34—C35—C36	120.53 (19)

N12-C11-C10	110.66 (13)	С34—С35—Н35	119.7
C27—C11—C10	112.63 (14)	С36—С35—Н35	119.7
N12—C11—H11	107.8	C37—C36—C35	119.38 (19)
С27—С11—Н11	107.8	С37—С36—Н36	120.3
C10-C11-H11	107.8	С35—С36—Н36	120.3
C11—N12—C1	113.59 (13)	C36—C37—C38	120.18 (19)
C11—N12—H12A	107.5	С36—С37—Н37	119.9
C1—N12—H12A	108.1	С38—С37—Н37	119.9
C11—N12—H12B	111.5	C37—C38—C33	120.95 (19)
C1—N12—H12B	106.5	С37—С38—Н38	119.5
H12A—N12—H12B	109.5	С33—С38—Н38	119.5
C33—C13—C1	115.72 (14)	C41—O5—H5O	114.3
C33—C13—C9	114.42 (14)	O5—C41—C42	111.77 (16)
C1—C13—C9	106.41 (13)	O5—C41—H41A	109.3
С33—С13—Н13	106.6	C42—C41—H41A	109.3
C1—C13—H13	106.6	O5—C41—H41B	109.3
С9—С13—Н13	106.6	C42—C41—H41B	109.3
C14—N1—C9	121.86 (15)	H41A—C41—H41B	107.9
N1-C14-C15	122.22 (16)	C41—C42—H42A	109.5
N1-C14-H14	118.9	C41—C42—H42B	109.5
C15-C14-H14	118.9	H42A—C42—H42B	109.5
C16—C15—C20	118.30 (17)	C41—C42—H42C	109.5
C16-C15-C14	121.47 (16)	H42A—C42—H42C	109.5
C20—C15—C14	120.21 (16)	H42B—C42—H42C	109.5
O1—C16—C17	118.54 (17)	С43—О6—Н6О	112.5
O1—C16—C15	121.25 (16)	O6—C43—C44	111.19 (17)
C17—C16—C15	120.21 (18)	O6—C43—H43A	109.4
C16—O1—H1O	103.3	C44—C43—H43A	109.4
C18—C17—C16	119.89 (19)	O6—C43—H43B	109.4
C18—C17—H17	120.1	C44—C43—H43B	109.4
С16—С17—Н17	120.1	H43A—C43—H43B	108.0
C17—C18—C19	121.22 (18)	C43—C44—H44A	109.5
C17—C18—H18	119.4	C43—C44—H44B	109.5
C19—C18—H18	119.4	H44A—C44—H44B	109.5
C20-C19-C18	118.95 (18)	C43—C44—H44C	109.5
С20—С19—Н19	120.5	H44A—C44—H44C	109.5
C18—C19—H19	120.5	H44B—C44—H44C	109.5
C19—C20—C15	121.41 (18)	O4—C39—O3	122.28 (17)
C19—C20—H20	119.3	O4—C39—C40	119.18 (18)
C15—C20—H20	119.3	O3—C39—C40	118.54 (17)
C22—C21—C26	118.20 (17)	С39—С40—Н40А	109.5
C22—C21—C10	121.76 (15)	С39—С40—Н40В	109.5
C26—C21—C10	120.03 (16)	H40A—C40—H40B	109.5
C23—C22—C21	121.00 (17)	С39—С40—Н40С	109.5
C23—C22—H22	119.5	H40A—C40—H40C	109.5
C21—C22—H22	119.5	H40B—C40—H40C	109.5
N12—C1—C2—C3	88.45 (19)	C20-C15-C16-O1	178.30 (18)
C13—C1—C2—C3	-152.89 (16)	C14—C15—C16—O1	-3.1 (3)
N12—C1—C2—C7	-90.60 (18)	C20-C15-C16-C17	-0.8 (3)

C13—C1—C2—C7	28.1 (2)	C14—C15—C16—C17	177.75 (18)
C7—C2—C3—C4	0.7 (3)	O1—C16—C17—C18	-178.2 (2)
C1—C2—C3—C4	-178.39 (16)	C15—C16—C17—C18	1.0 (3)
C2—C3—C4—C5	-0.3 (3)	C16—C17—C18—C19	-0.1 (3)
C3—C4—C5—C6	-0.6 (3)	C17—C18—C19—C20	-1.0 (3)
C4—C5—C6—C7	1.1 (3)	C18—C19—C20—C15	1.2 (3)
C5—C6—C7—O8	-178.01 (15)	C16—C15—C20—C19	-0.3 (3)
C5—C6—C7—C2	-0.6 (3)	C14—C15—C20—C19	-178.86 (18)
C3—C2—C7—O8	176.98 (15)	C11—C10—C21—C22	44.7 (2)
C1—C2—C7—O8	-3.9 (2)	C9—C10—C21—C22	-82.32 (19)
C3—C2—C7—C6	-0.2 (2)	C11—C10—C21—C26	-133.91 (16)
C1—C2—C7—C6	178.88 (15)	C9—C10—C21—C26	99.07 (18)
C6—C7—O8—C9	-173.46 (14)	C26—C21—C22—C23	1.3 (2)
C2—C7—O8—C9	9.2 (2)	C10-C21-C22-C23	-177.29 (16)
C7—O8—C9—N1	-158.67 (13)	C21—C22—C23—C24	-1.0 (3)
C7—O8—C9—C13	-38.05 (18)	C22—C23—C24—C25	0.0 (3)
C7—O8—C9—C10	83.72 (17)	C23—C24—C25—C26	0.8 (3)
O8—C9—C10—C21	57.51 (18)	C24—C25—C26—C21	-0.4 (3)
N1—C9—C10—C21	-61.23 (18)	C22—C21—C26—C25	-0.6 (3)
C13—C9—C10—C21	-179.16 (14)	C10-C21-C26-C25	178.05 (16)
O8—C9—C10—C11	-68.47 (17)	N12—C11—C27—C32	-70.3 (2)
N1-C9-C10-C11	172.79 (13)	C10-C11-C27-C32	53.6 (2)
C13—C9—C10—C11	54.86 (18)	N12-C11-C27-C28	109.50 (17)
C21-C10-C11-N12	-175.72 (13)	C10-C11-C27-C28	-126.60 (17)
C9-C10-C11-N12	-48.19 (18)	C32—C27—C28—O2	-178.12 (15)
C21—C10—C11—C27	60.78 (18)	C11—C27—C28—O2	2.1 (2)
C9—C10—C11—C27	-171.69 (14)	C32—C27—C28—C29	1.5 (3)
C27—C11—N12—C1	177.98 (13)	C11—C27—C28—C29	-178.31 (16)
C10-C11-N12-C1	52.95 (18)	O2—C28—C29—C30	178.19 (17)
C2-C1-N12-C11	58.31 (18)	C27—C28—C29—C30	-1.4 (3)
C13—C1—N12—C11	-63.00 (17)	C28—C29—C30—C31	-0.3 (3)
C2—C1—C13—C33	74.96 (19)	C29—C30—C31—C32	1.8 (3)
N12-C1-C13-C33	-165.24 (14)	C30-C31-C32-C27	-1.7 (3)
C2—C1—C13—C9	-53.37 (18)	C28—C27—C32—C31	0.1 (3)
N12-C1-C13-C9	66.44 (16)	C11—C27—C32—C31	179.82 (17)
O8—C9—C13—C33	-69.97 (18)	C1—C13—C33—C38	127.54 (18)
N1-C9-C13-C33	50.72 (19)	C9—C13—C33—C38	-108.19 (18)
C10—C9—C13—C33	167.57 (14)	C1—C13—C33—C34	-54.1 (2)
O8—C9—C13—C1	59.12 (16)	C9—C13—C33—C34	70.1 (2)
N1—C9—C13—C1	179.81 (13)	C38—C33—C34—C35	0.5 (3)
C10—C9—C13—C1	-63.34 (16)	C13—C33—C34—C35	-177.78 (18)
O8—C9—N1—C14	13.6 (2)	C33—C34—C35—C36	0.1 (3)
C13—C9—N1—C14	-108.74 (18)	C34—C35—C36—C37	-1.1 (4)
C10—C9—N1—C14	133.19 (16)	C35—C36—C37—C38	1.4 (4)
C9—N1—C14—C15	178.85 (16)	C36—C37—C38—C33	-0.7 (3)
N1—C14—C15—C16	1.3 (3)	C34—C33—C38—C37	-0.2 (3)
N1-C14-C15-C20	179.83 (17)	C13—C33—C38—C37	178.19 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1O…N1	0.94	1.73	2.608 (2)	154
O2—H2O···O3 ⁱ	0.97	1.67	2.637 (2)	177
O5—H5O···O6 ⁱⁱ	0.97	1.69	2.651 (2)	174
O6—H6O…O4	0.98	1.65	2.617 (2)	173
N12—H12A…O3	0.93	1.77	2.697 (2)	172
N12—H12B…O5	0.94	1.77	2.709 (2)	173
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x$	<i>z</i> +1, − <i>y</i> +1, − <i>z</i> +1.			

Fig. 1

